Mean Growth of Inner Functions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On The Mean Convergence of Biharmonic Functions

Let denote the unit circle in the complex plane. Given a function , one uses t usual (harmonic) Poisson kernel for the unit disk to define the Poisson integral of , namely . Here we consider the biharmonic Poisson kernel for the unit disk to define the notion of -integral of a given function ; this associated biharmonic function will be denoted by . We then consider the dilations ...

متن کامل

Hyperbolic Mean Growth of Bounded Holomorphic Functions in the Ball

We consider the hyperbolic Hardy class %Hp(B), 0 < p < ∞. It consists of φ holomorphic in the unit complex ball B for which |φ| < 1 and sup 0<r<1 ∫ ∂B {%(φ(rζ), 0)} dσ(ζ) < ∞, where % denotes the hyperbolic distance of the unit disc. The hyperbolic version of the Littlewood-Paley type g-function and the area function are defined in terms of the invariant gradient of B, and membership of %Hp(B) ...

متن کامل

Mean oscillation of functions

The oscillatory behavior of functions with compactly supported Fourier transform is characterized in a quantiied way using various function spaces. In particular, the results in this paper show that the oscillations of a function at large scale are comparable to the oscillations of its samples on an appropriate discrete set of points. Several open questions about spaces of sequences are answere...

متن کامل

One-component inner functions

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if c...

متن کامل

on the mean convergence of biharmonic functions

let denote the unit circle in the complex plane. given a function , one uses t usual (harmonic) poisson kernel for the unit disk to define the poisson integral of , namely . here we consider the biharmonic poisson kernel for the unit disk to define the notion of -integral of a given function ; this associated biharmonic function will be denoted by . we then consider the dilations for and . the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1973

ISSN: 0002-9939

DOI: 10.2307/2038729